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Elasticity of rubber with smectic microstructure
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Using a physically motivated continuum model for the free energy of an elastomer with a smectic or lamellar
microstructure, we examine the effects of coupling between the smectic and the rubber-elastic degrees of
freedom on measurements of the layer structure and elastic moduli. In agreement with experiment, we find that
the elastic response to stretching along the layer normal is greatly increased by the smectic layering, while the
modulus parallel to the layers is unchanged. We show that Landau-Peierls instability of fluctuations in the layer
structure of ordinary smectic liquid crystals is removed by the elastic matrix. Consequently one sees Bragg
peaks in the diffraction pattern of a solid with one-dimensional order and we calculate the Debye-Waller
factors for these.

PACS numbds): 61.30.Cz, 61.4%:¢e, 83.20.Bg

[. INTRODUCTION polymers are more frequently found smectic than nematic.
The reason for this is straightforward: a tendency for mi-
Liquid-crystal elastomers are materials displaying bothcrophase separation between aligned rodlike mesogenic
liquid-crystalline order and a sparse crosslinked network ofroups and the polymer backbone results in the layered mor-
flexible polymers. There are thus two types of degrees ophology.
freedom in elastomer liquid crystals, those associated with A crosslinking strategy in preparing smectic networks has
liquid-crystalline order and those associated with the rubberto take into account certain molecular constraints. In fact, the
elastic matrix. These two degrees of freedom are couple@ketch in Fig. Lo illustrates that one needs to be careful in
together and it is the interplay between them that gives théelecting the size of crosslinking molecular groups. From the
liquid-crystal elastomers their unusual mechanical charactegeometric point of view they have to have a length equal to
istics. One of the most startling is the effect of soft deforma-an integer of the smectic layer spacimg. A pointlike
tion in the case of nematic rubbefs]. Here, for certain crosslink would bind backbones confined within one inter-
modes of deformation, realignment of the director producedayer plane. The same applies to a flexible chain binding two
an exactly equivalent molecular arrangement after deformabackbones—this, in some sense, accounts for two pointlike
tion. Consequently, in the ideal case there is no energy pergrosslinks. A rodlike crosslink such as bi-functional groups
alty for such deformationg2]. shown in Fig. 1c) would bind backbones across a layer, if its
In this paper we examine another case of rubbery elastitength is~d,. Anything in between would create a strong
material with microstructure: lamellar or smectic elastomersdistortion of the local smectic order near an incommensurate
Smectic elastomers and gels, or permanently crosslinked negrosslink[8] and, therefore, would depress the existence of
works of polymer chains that spontaneously form smectic othe phase. The crosslinking of polymers in the smectic phase
lamellar phases, are just as frequent as the nematic oneyeates a local dependence between the crosslink and the
From the symmetry point of view there is a great variety oflayer position and their relative movement along the layer
possible phases, combining the one-dimensi¢hA) smec- normal should be difficult. We shall soon return to this point,
tic order with various degrees of positioning and alignmentcrucial to the understanding of smectic rubber elasticity.
of mesogenic groups. We shall consider the most simpléote that the position of crosslinks has no effect in the ho-
smectic order, called “smectié” or lamellar L, phase, mogeneous nematic phase: one needs to break the transla-
where the average molecular anisotropy axis is coaxial with

the layer normal. In other words, the nematic directdthe BN T ’w‘
principal axis of uniaxial optical birefringenges locked per- \”“\ | s “ \I\ |
pendicular to the smectic layers. In many molecular systems weeer | _y‘\/‘_ﬁ
the smecticA or L -lamellar order is all the material can e e e frg
achieve in terms of intermediate degree of order between a "u” { " ‘; ” {
fully isotropic and a crystalline or glassy state. Examples of ael UL
such systems, one way or another, involve polymer chains 11411 1
that are prone to microphase separation: block copolymers “”" " ”‘
[3,4] or polysurfactant$5]. Independently, a substantial ef- o L1211
fort has been put, over the years, into synthesizing and @) (b)

crosslinking the naturally liquid-crystalline polymers pos-

sessing smectic phases. FIG. 1. Schematic drawing of mesogenic group arrangement in
Figure 1 shows a schematic smecalignment of side-  smecticA phase of(a) liquid-crystal, (b) side-chain polymer with

chain liquid-crystalline polymers. In fact, since their first ap- the backbone confined between the layers, @mdlastomer with

pearance in the early 1980(g.g., Refs[6] and[7]), such  crosslinking groupgdarkenedincorporated into the smectic layers.
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tional symmetry of mesophase in order to experience such smectic, and the elastomer; these are the three relevant de-

coupling. grees of freedom. These degrees of freedom couple with
As with nematic networks, the conditions of crosslinking each other so that we have, in principle, three couplings be-

define the texture of the resulting mesophase. When the netiween pairs of these to include in the free energy. Let us

work is formed in the isotropic phase or when no specialdescribe each of the contributions to the free energy in turn,

aligning procedure is applied, the liquid-crystalline elastomerstarting from the small deformation limit of anisotropic elas-

invariably forms a polydomain texture of very small charac-tic rubber.

teristic size. Polydomain nematic and smectic elastomers and

gels strongly scatter light and, thus, appear opaque. In con- A. Linear elasticity of nematic rubbers

trast, when the final crosslinking of the network is performed i ) ) ) )

in an aligned statéwhether in a mesophase or in the isotro- _ AS @ first step in any continuum elastic theory, one iden-

pic state, for instance, by applying a stress or a strong maéi_fies the translational degree of freedom, the vector of local
netic field, which is then frozen in by crosslinkinthe mon- displacement in the elastic netwovKr), with the coordinate

odomain liquid-crystalline phase results. In this way, by" Measured in the undistorted body. Here and below one
uniaxially stretching the material before final crosslinking, Should take care distinguishing this upper-case notation from
Nishikawa and Finkelmanf®] have produced the required the more trgdmonab(r). We shall see later thgt in a phase
symmetry breaking with a principal axis determining the Where a microstructure has a broken translgtlonal symmetry
layer normal in resulting monodomain smectielastomers.  €Ven the constant absolute value of local o!lsplacement, e.g.,
The subsequent heating into the isotropic phase and coolirfy componentV; along the layer normal in the case of
back into the smectic preserves this uniaxial alignment imSMecticA, will contribute to a coupling free energy. In con-
posed by the stretching, with layers spontaneously forming%raSt’ ina standard elasticity one only f_mds a role for relat|ye
in the plane perpendicular to the stress axis. ranslations expressed by the nonunlform part qf the dis-
In this paper we develop a universal continuum descripplaceme_nt vectorv(r). For _mstance, this describes the
tion of monodomain nematic and smecticelastomers, ex- change in the end-to-end distance of a network strend
amining the couplings between the director, the layer confor=Ro*v. The gradients define the small deformation tensor
mation, and the underlying rubber deformations. In theVas=dv./dXg, the full affine Cauchy strain tens?r being
proposed theory, the smectic order parambtéris allowed €N\ .z= 3,5+ V. Only the symmetric part 5= 3(Vap
to change between zefgiving the correct limit of nematic +Vga) contributes to the ordinary elastic response. In a
rubbed and one(describing a strong smectic ordlewe cal- ~ frame-independent form, the free-energy density of a
culate the effect of smectic order on the effective elastidiniaxial material is given by
moduli and compare the results with the experimental data of _ ~ 2
Nishikawa and Iginkelmann. We also reexa%ine the effect of e~ Ca(N-&-M7+2C, Trlg](n-£-n)+Cs(Tr£])
layer fluctuationg10] and give an improved description of +2C,[NXEXN]?+4Cs([nXE-N])?, (1)
the Bragg scattering of smectic layers, with Debye-Waller B B
factors determined by the crosslinking density and smectiqith n the local axis of anisotropythe undistorted nematic

order parameter. director or the smectic layer normaland e,s=¢,p
- %Tr[g] Oqp the traceless part of strain. In the given form,
Il. THE CONTINUUM MODEL Eq. (1) is a standard expression for a uniaxial elastic ma_terial
[12] and has exactly the same form as the one used in the
In order to understand the physical properties of smectidinear theory of nematic elastomdi2], which is a result of
elastomer networks, we need to examine the relevant varthe same point symmetry of the two phases. When the direc-
ables describing different aspects of their behavior. We shation of n is chosen along theaxis, the elastic energy density
always compare these with the case of nematic elastomerngkes a more familiar uniaxial form
where there is a better theoretical understanding and much
experimental data. In some materials this comparison has a FeI:C1;§z+ zczgzzTr[§]+c3(Tr[§])2
direct benefit because they actually possess a nematic phase B B
at a higher temperature, which then transforms into the +2C (el + 2642+ 85,) +4Cs(e, 7+ 8y, ). (2)
smectic on cooling below the critical poifitys . In many
other cases there is no preceding nematic phase: some liqu@he expects that in a rubber or dense polymer melt the bulk
crystals transform directly from isotropic into the smedtic- modulusC; is very large,C3~10°— 10 J/n?. The three
phase; the lamellar phase, is often the first stage of sym- moduli C;, C,, andCs are of the same order of magnitude
metry breaking from the isotropic homogeneous mixture omjiven by a typical rubber shear modulus-10*—10° J/n®.
polymer blend. However, the final state of smectic elastomelhe anisotropic compression correcti@g is usually much
should have macroscopic properties qualitatively the samemaller in polymer networks, determined by secondary ef-
regardless of how this phase has been reached. Therefore, feets of non-Gaussian corrections and semi-softness. Since
results and conclusions we shall obtain by examining elasshear modulC; are much smaller than the bulk modul@s,
tomers with nematic order and the added effect of layerspolymer materials deform at essentially constant volume. A
will be equally applicable to all lamellar systems once themolecular theory of nematic elastomédg gives particular
nematic degrees of freedom are integrated out. values to the shear moduli:
We, therefore, write the continuum free energy as the sum
of the contributions for the ordinary nematic, the ordinary C,=ckgT, C,=0, 3

lle 2
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//// % FErani= 3 K1 (div 6n)2+ 3K ,(n curl 6n)?
4 + 2K [ nX curlén]?. (6)
st ‘n
i e In most systems one finds the Frank constédts 3 of the
kY IO Ay = X same order of magnitude, crudely estimated-&sT/a with
e a being a molecular length, giving~10 !N [13]. The
e only real exception is main-chain liquid-crystalline polymers

where, in the hairpin regime, the splay constinrtis much
larger. We shall not consider such special cases here and
will, therefore, assume that a physically important length

FIG. 2. The relative rotation coupling between the elastic matrixscale, the elastic penetration depfk VK/u, is a small
and the uniaxial layer system: the magnitude of local matrix rotauantity of orderé~10"8 m.

tion Q= %curl v (or rather its component perpendiculamphas to
be the same as the director rotation angle

B. Smectic energy density

1 (r+1)? Smectic or lamellar order is characterized by a 1D wave
Ca=5CxkaT,  Cs=5CKeT— —, of density or compositiong(z)~ py+ | #|cosgz+®P). Here
zis measured along the layer normal, the amplitude of modu-
lation |4 is a critical function of temperaturey=2=/d, is
the periodicity wave number, and(r) an arbitrary phase
[14]. Far below the smectic phase transition this modulation
may be coarsened from the simple cosine form to a more
steplike profile. Generally, from the symmetry point of view,
the phase transition directly from the isotropic phase to
smecticA (a change between full rotational symmetry and
the point-groupD..;, representing a simple cylindeis ex-
yactly the same as that between the isotropic and nematic
phases and it has to be first order. This is the case in many
~ systems that are candidates for smectic elastomers, in

Fro=3D1[nX (2~ )]*+D,n-2-[NX(Q—w)], (4  particular—all lyotropic or block-copolymer lamellar phases.

(A comprehensive description of symmetry changes during

where the small rotation vectes is a convenient measure of phase transformations in liquid crystals is given in R&8].)
variation of the unit vecton, w=[nx én]. The elastic en- The transition between an established nematic phase and
ergy (4) arises when the director rotates differently from thesSmecticA can, by symmetry, be second order. However, in
underlying elastic matrix: at small deformations the latterpractice, in the majority of ordinary liquid crystals with the
rotation is often represented by a vecfdy,= %EQMVM, or I-N-A phase sequence, the A transition appears to be first
Q=}curly, proportional to the antisymmetric part of strain order, cf[13]. In contrast, in elastomers, due to the random-
v%,. The orientations of» and{2 are the axes of respective field effect of quenched crosslink8], one expects to find a
rotation in the two fieldsp andv, their magnitudes are the Continuous transition withy| —0 much more frequently.
angles of these local rotations, see Fig. 2. First written by de When the smectic order is well established, the phase of
Gennes on symmetry grounfil], the relative-rotation cou- layer modulation can be written als=—qoU(r) with U(r)
pling terms have been later obtained in the small-strain limigdescribing the layer displacement. Note the upper-case nota-

of the full microscopic theory, giving the particular values of tion which, as in the case of network displaceme(t) in
the constants the previous section, includes both tenstantdisplacement

and the spatially varying paui(r). The layer displacement is
2 2 not a vector but only a component along the layer normal (
(r—=1) 1-r ST .
D;=c.kgT . Dy=ckgT ) (5) or n for the smecticA): displacements in the layer plane
r r have no physical meaning for smectic liquid crystals. The
continuum description of smectic and lamellar phases uses
As expected, in the isotropic limit— 1, both sets of con- the gradients of nonuniform layer displacemei(t) as ef-
stants, Egs(3) and (5), reduce to their values in classical fective strain fields, in this way any possible constant contri-
Lameelasticity,D;=D,=0 andC,;=2C,=2Czs= pu. bution to the displacement field disappears from the analy-
The relative-rotation couplingd) penalizes local uniform sis. As described in the following section, in a smectic
director rotations with respect to the elastic matrix. For in-rubber one finds a coupling of relative translatithandV,,
stance, if no elastic strain is allowed in the sample, this exwhich is sensitive to their uniform parts as well. The correct
pression reduces ,,=3D,(6n)2. Such a breaking of ro- elastic free energy must be invariant under the symmetry
tational invariance is not found in ordinary liquid crystals. transformations of the phase, given here by the point-group
There, like in standard linear elasticity, only the gradients oD..;,, the 1D translational periodicity alongy and the con-
the deformation field contribute to the physical effectsdition of layer continuity. At leading order, the free-energy
through the celebrated Frank curvature elastic energy densityensity of a smectié takes the classical forifil3]

where w=c,kgT is the rubber modulus in the isotropic
phase €, proportional to the crosslinking densitand r
=1y /1, is the anisotropy of polymer backbones forming the
network, spontaneously liquid crystalline or with anisotropy
induced by the mesophase.

When the variation of the principal anisotropy axisis
allowed, the coupling of the director fluctuations or induced
rotations to the underlying rubbery network is described b
two linear relative-rotation terms in the energy density:
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Fema=3B(Vu)?+3K(VZu)?, (7) A

whereV? =VZ+ V] describes the mean curvature of the lay- g , | \ I mn\
ers, with the constark equivalent to the splay Frank con- “ “ “l“ | L
stantK, of a nematic and th& term penalizes the layer i ST
compression. The arguments leading to this expression, are ”\”"mr"
made under the assumption that the nematic directis ‘ ;
always perpendicular to the layers, coinciding with the local
layer normalk. Usually, this is a fairly good approximation. FIG. 3. The relative translation coupling: the movement of net-
However, close to thé-A transition, the constraint on work crosslinks, locked with respect to the local smectic layer po-
being perpendicular to layers becomes weaker and the diresition, causes the layer distortion. The matrix displacement compo-
tor may independently fluctuate with respect to the layer nornent along the layer normaf, has to be the same as the local layer
mal. Strictly, even deep in the smec#icphase, one should displacement.
not regard the director as rigidly locked—it is just that de- ) .
viations ofn from k are penalized by a large energy. cluding the possible constant peshiould produce an energy
One needs to examine how this nematic-smectic coupling_e”a“y’ if the neighboring layers do not move in phase, see
affects the physical properties in corresponding elastomers.!9- 3. . )
In particular, this is important because one expects the direc- Unusually, such a coupling does not have to involve spa-
tor fluctuations to be affected by the nematic relative rotatiorfial gradients of the displacement fieldsandU. In a tradi-
coupling to the rubbery networtd). The mean-field Landau t!onal elastic continuum with only one relevant deformation
free-energy density describing the A phase transition and field, V(r) or U(r), the free energy cannot depend on such a
the coupling to nematic director fluctuations is thoroughlyf'e|d but only on its gradients, otherwise a constant dlsplac_e-
discussed in the literature and summarized in monograph&?ent of the whole sample would cost energy. In nematic
e.g.,[13]. The corresponding gradient terms describing theelgstomers, because the s_econd d.eformatlo.n field was orien-
layer distortions are written d4.4] tational, we found a relative-rotation coupling of uniform
fields of orientation. In a smectic system, with both deforma-
~ tion fieldsV andU corresponding to translations, we have an
Fama= 301095 ¢12(V u)%+ 39, 03[ #12(V, u+8n)2, (8)  energy penalty on their locaklative magnitude along the
layer normal.
For small relative displacements between the layers and
e elastic medium the penalty must be harmonic with a
free-energy density of

where the first term is the layer compression, leading directl){h
to theB term in Eq.(7) with B=qu3|z,//|2. The second term,
with b, =g, q3|#|?, is the penalty for the deviation of local
director 6n from the locally rotated layer normal. The values Fuan=A [U(r)—V,(r ]2 9
g;#9, because of the uniaxial nematic anisotropy, but
should be of the same order of magnitude. In a thermotropiSince no spatial derivatives are involved in Eg) it is es-
smecticA liquid crystal, the value for the layer compression sential to separate the deformation fieldlendV, into their
constant isB=10° J/n. One finds a similar value in lamel- constant components, unifortaverage strains and fluctua-
lar block copolymers, while in diluted lyotropic lamellar sys- tions with respect to these average values, in both layer and
tems, B can be much lowef16]. Another relevant length elastomer subsystems. The analysis in RE8] shows that
scale emerges from the smectic elastic energy de(Wityhe  there is a rigid constraint on the constant strains involving
ratio yK/B=dg, giving the smectic layer spacing. the displacement along theaxis, the layer normal. Essen-
tially, an imposed uniform elastic sheway, or extensiorv,,
would result in a corresponding equal uniform layer rotation
V.u or extensiorV ,u. In contrast, a shear or an extension in
The formation of a rubbery network in a smectic or lamel-the layer planey,, or v,,, do not have such a direct effect
lar phase results in preferential placement of crosslinks witlon the layers. In this paper we do not consider such imposed
respect to the layers. In the geometry of Figc)l the shears and mostly concentrate on the fluctuations and effec-
crosslinks are locked within the layer, as the real mesogenitive elastic constants. Therefore, the harmonic coupling of
side-chain polymers would indeed do. The sketch in Fig. 3ocal fluctuations\ [u—uv,]? will be sufficient in most cases.
shows the crosslinks within the backbone in the interlayer In a continuum theory one requires an estimate for the
spacing; in the synthetic work of Gebhard and Zeni&] new coupling constanA. Equation(9) describes an effect
the crosslinking has been of this type. In any case thereombining the entropic rubber elasticity and the smectic
clearly is a barrier for a crosslinking “point” to instantly layer potential barrier, hence the characteristic energy scale
cross into the neighboring layer. Of course, crosslinks cars a(¥) kgT. Here a is an unknown coefficient of order
freely migrate within their chosen layer plane. Accordingly, unity, which however must depend on the smectic order pa-
only thez component of the full crosslink displacement vec- rameter} 4|, tending to zero near a transition. The continuum
tor V participates in the relative translation coupling, shownmodel of a rubbery network has a short distance cutoRat
in Fig. 3 and Eq.9). Therefore, any attempt to deform the the characteristic distance between connected crosslinking
rubbery network(which amounts to the relative movement points (the spatial extent of elastically active network
of crosslinks, described by the displacement vedatorin-  strands. Taking into account the number of network strands

C. Relative translation coupling
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per unit volumec,, we can write on the grounds of dimen-
sional analysisA~achBT/R(2) (compare with the rubber
modulusu=c,kgT). Since chain configurations in the rub-
bery state are random walks, we have rougi}Jy(IRS)*l,
with | being the characteristic step length of such a walk.
Thus A may be further written as- kBT/(IRé). In a typical
polymer the step length~1 nm. Therefore, in a rubber ma-
terial with modulusy~10° J/n? at room temperaturekgT
~4x10" 2 J) the characteristic network span shouldRye FIG. 4. Geometry of relevant vectors in the problem. The prin-
~6—10 nm and the constart~ 2.5X 102 J/nP. cipal axiszis chosen along the initialy, with the director deviation
On the grounds of symmetry we might wish to write an- on perpendicular to it. Two arbitrary axes in they plane are
other coupling term. It is also due to the translational sym-chosen along the projection of the wave veogor (axis 1) and

metry breaking of layers and should take the foiy(z,, perpendicular to itthe transverse axiy.

—V,u)2. Such contribution to the energy density describes o ) ) o ]

the evident fact that, when the material is stretched along th@ cYlindrical polar notation with the principal axis along the

layer normalz, the layer spacing has to stretch too, devia-initial nematic director, see Fig. 4. R

tions being penalized by an energy of ordej. However, We denote t_he direction parallel to the |n|t_|al _dwect_q,r

such coupling serves a minor role, being a small addition tdand the smectic layer normads|| or z. At a point in recip-

a far more important effect—the relative translation couplingocal spaceq we denote the direction parallel {m,Xx[q

(9) leading to a rigid locking of unifornz strains. Xng]] by L. The orthogonal direction in the-y plane, par-
allel to[nyxq] is denoted byt (for transversg see Fig. 4.
All vectors in our new reciprocal space coordinate system

IIl. THE CALCULATION can now be expressed in terms of the unit vectors

e(a), e (a), ande(q).

The full free-energy density, expressed as a sum of all the
contributions discussed above, E@B, (4), (6), (8), and(9),
contains several independent degrees of freedom: the local
displacement of elastic netwod(r), the layer displacement At the first instance, we are interested only in the role of
u(r), and the nematic directan(r). These fields fluctuate director fluctuationsSn(r), as the field that does not have a
independently and couple to each other in the free energyelevance for macroscopic observable properties of smectic
thus affecting the macroscopic response of the system. Irubber. Performing the Fourier transformation of those parts
order to calculate such responses, e.g., an effective elastif free-energy density that involvén, one obtains a free-
modulus, one needs to minimize the total free energy wittenergy density iy space
respect to all other degrees of freedom, in this case—the
director and the layer fields. In other words, in order to comFq=3(D1+b, +K;0? +K3a2)|ong, |2
pute a given macroscopic property of a system with micro-
structure, one has to integrate out the fluctuations of this

current director

X: (D) on @

A. Integrating out the nematic director én

+3(Dy+b, +K,al +Ksq?)|Sng.l?

microstructure. 1042 2 2 1 *
In the first instance, we would like to perform the integra- +2(BG b, 0L |ug "+ 4(1q.[D1+ D] PNaLg
tion over nematic director modes and find the effective free- +2iq, b, 5nq¢U§ +c.c)
energy density of smectic and elastic fielg) and u(r), . ) . .
for which the director has found a corresponding lowest- ~ —a(D1=D)[ig,(dng vy, +dngwg)+c.cl, (10

energy strain configuration. The equilibrium properties of a

system are determined by the full partition functidh  \yhere all three fields are complex functions of the wave
=/DnDuDv exd —(1kgT)H(n,u,v)] with the director-  yectorq; c.c. stands for complex conjugate combinations ex-
dependent part of given by all contributions discussed in piicitly arising in the coupling terms. Note that in an ordinary
the last section. Carrying out the first step, the integratiorsmectic liquid (with no background rubbery networkhe
over director fluctuation modesn, one may use the method re|ative-rotation constant®; andD, are zero and the only
of steepest descent, which is equivalent to minimizationaddition to the Frank elasticity is the term proportional to
SHI6n=0 at fixedu(r) andv(r), and leads to the “effec- bl=9¢qg|¢|2-
tive Hamiltonian” depending only on these remaining fields. e optimal values for two componend®,, and dng,
This section outlines several examples of such computationy e ontained from the quadratic forms in Eﬂ;O): d
In linear continuum theory, where the free energy is typi-
cally a quadratic form in the fluctuating fields, the steepest-
descent method is giving an exact result and, therefore, the i (D2=D1) quq¢
“integrating out of the fluctuating degrees of freedom” is 5”qt:§ D.+b. +Koa2+Kag2
mathematically equivalent to the minimization®{n,u,v). R
This is most easily done in reciprocal space, enabling one to
perform the minimization by algebraic manipulations rather i (D,—Dy) g, +(Da+Dy)qLvg,+2b,qu
than by solving differential Euler-Lagrange equations. Fol- ény, =5 ) > qz 3,
lowing the review articld14], it is convenient to switch into 2 Di+b, +Ki0f +Ks0;

(11)
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In the limiting case when the crosslinking density of the 2 m
netvvprk is zero, i.e., there is no underlying rubber-elastic Hl]%ﬂ%%{?gﬂﬂﬂ
matrix, Egs.(11) reduce to MUUU\\UUHUUU

ong;=0; dng, ~iq, uq B I [ AL
after expansion at small wave vectpfcontinuum deforma- x
tions are afg|<+b, /K, 3 below theN-A transition where

b, #0). In real space this gives, explicitiyp~ -V | u, that

is the average director is tied to the layer normal and rotates
with it on deformations. In this case the effective smectic Ty
elastic free-energy density takes the form

L 5 4 ) FIG. 5. Shearing irx-z plane governed by the modul@ and
Fsma=2(Bd;+ K1‘h)|”q| , (12 shearing inx-y plane governed b, clearly show how the layer

which is the Fourier transform of Eq7), the elastic energy structure affects the elastic response in the first case but does not in

of a lamellar phase. We see that it is indeed the splay Franﬁpe second.
constantK; of an underlying nematic that controls the layer )
i i D
curvature term, proportional to the fourth-order gradight CSMA_ . — 2 (15
We shall see below that the coupling to a rubbery network 5 °> 8(b,+Dj)"

removes this degeneracy.

Substituting the optimal director modékl) into Eq.(10)  This is exactly what one would expect physically, see Fig. 5,
and only retaining the leading terms in powers of the smalls shear in the-x plane implies a rotation of the director
wave vectorg, we have with respect to the layers and the elastic matrix. In contrast,
for the x-y shear corresponding to the coupling cons@nt

q2|u 2 also pictured in Fig. 5, the director takes a purely passive
2(b, +Dy) role and thus this constant is not renormalized. Note that in
the pure nematic case the analogous renormalization by di-
n rector fluctuations is the combinati@ — %D%/D1—>O, first
2(b, +D;)? obtained by Olmsted in a study of soft elasticity in nematic
rubbers[2]. Clearly, the coupling to smectic layers imposes
[b,(D;—2D,)-D3] , ) 5 sufficient constraints on director fluctuations to prevent the
8(b, +D;,) Az([vqul*+lvqd®) complete softness. As expected, the resulting correction
away from softness is then proportional to the degree of
smectic order, via the order parameter dependebce

1 b, D,
ququ§|uq|2+

2
L

KlQi|Uq|2

[b,(Dy+2D,)—-D3]

2
8b,+D,)  dlvad ~ |yl
5 The smectic energy densify,,,» can be brought to the

(b, D;+D3) - . standard form, Eq(7), with a renormalized layer-curvature
- 4(bl+D1) quZ Z[ququ—i_quvqi] constant:

bJ_(Dl‘l‘ D2) 21 . b2
- 5[Uvg, ViU L

2(b, +Dy) & 2[UqvqzTvgatlo] K=MK1- (16)

b, (D;—Dy)

2(b, +D,) kY 2lUgugutog Ul (13 Finally, the coupling between the rubber-elastic and smectic
layer deformations in Eq.14) takes the explicit form, com-
The K, term is placed in parentheses as it is fourth order inbining the terms of corresponding symmetry wittr) and
g- We retain it to illustrate how it would give thléqf ina wo(r),
normal smectic phase where this represents the leading effect

in the layer plane. F coupling= AL V(1) —U(1) 12+ 3 A1[ (2 — wp) X Ny ]
Bringing this result together with other contributions to ~
full free energy, which did not contain the fluctuatisy, +A2N0- & [(Q—wa)XNo]
one obtains the effective energy density of a smectic elas- = ATV(D) = U(O 12+ LA, (VA +V.u)2
. . . = - 3 i+ Viu
tomer depending only on the elastic and layer displacements. (VAN U+ 2 A4(vig + Vi)
The expression is then converted into real space by matching +A, 85 (VL4 Viu), (17
the coefficients of the various combinations allowed by sym-
metry: with the summation ovei=Xx,y, where w, is the vector
describing the local layer rotation, with components to first
F=Fgt+Fsmat Fcoupling- (14 9 y P

order wa=(Vyu,—V,u,0). Here one finds an important
The rubber-elastic paff, is determined by the same five- contrast with the ordinary smectic expressiah. To illus-
constant expression, Eqg&l) and (2), which is dictated by trate the point, consider the case when no elastic strains are
the uniaxial symmetry. The only modification is the renor- permitted in the rubbery network. At=0, Eq.(17) reduces
malized value of the shear modulus to
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F coupling— A (W)2+32A(V, u)2 Similarly, at|¢|— 1, the model expressions for the smectic-
rubber coupling constants approach thege values char-

Both terms significantly impede fluctuations of smectic lay-acteristic of a nematic elastomek; j—|D1 . When the
ers. For instance, the familiar degenerdtye leadingqg? smectic or lamellar order is weak, , |#|—0, these cou-
dependengeis not obtained in the corresponding lamellar pling constants are proportional ko .
rubbery network. In Sec. IV we shall examine this effect in It is also interesting to discuss the case of an elastomer
greater detail, taking into account the effect of a fluctuatingwith lamellar microstructure, which does not have an under-
rather then zero, elastic fiels(r). lying nematic order: a lyotropic lamellar phase, or a mi-

The coupling constants are now given by the combinatiorcrophase separated block-copolymer crosslinked into a rub-
of underlying nematic relative rotations and the smectic pabery network. The analysis of this section, including the free-
rameterb, ~|y|?: energy density expressioridé4) and the relations between
the moduli, remain valid. However, the backbone chain an-
isotropy (—1)=(I;/1, —1), which is a measure of “nem-
atic order parameterQ, is now directly given by the emerg-
ing lamellar density modulatior®~||?. One then might
In addition to the relative translation term, unique to smecticexpect unusual mechanical anomalies when the tikr
phases, thed; coupling penalizes relative rotation of the —1)2~1/4|?> may actually grow near the transition. There
layers and the elastic matrix, and the term couples rela- will be no physical divergence since the transition directly
tive rotations to symmetric strains of the matrix. When thefrom isotropic into the smectic phase has to be first order, by
nematic director is very strongly anchored along the layesymmetry. Nevertheless, a substantial hardening of certain
normal, the nematic relative rotatiol( ,) is really equiva- mechanical modes may be registered as a lamellar rubber
lent to that of a smectic. Accordingly, we may notice that if approaches its isotropic phase.
b, >D4, there is such an equivalence emerging from expres-
sions(18). In the opposite limiting case, when the network is B. Integrating out the layer structure
rather rigid and smectic layers present a weaker influence,
D,;>b, (which should also be the case near NwA phase
transition when|y|—0), one obtains a correspondingly
weaker couplingA;=b, ; A,=b,(D,/Dy).

This section presents a consistent continuum elasti
theory of linear elasticity in rubber networks with smectic or
lamellar order. All expressions are derived phenomenologi

cally. To complete this description, it is useful to present therI twati des i ) | ith
effective elastic and coupling constants that derive from th uctuation modes in reciprocal spacgg) with zero mean.

underlying nematic elastomer—for which there exists a trictly, the result of such optimization~depends on the mag-
molecular-level description, e.g., see the revigly. This  nhitude and geometry of imposed straisiyg, externally ap-

would also allow some predictive power in estimates of magPlied to the sample. However, we are presently only inter-
nitude of these constants. The constants follow from Egsested in effective rubber-elastic moduli, which are

(18)

We now proceed to integrate out the fluctuations of the
layer structure, in a similar fashion to the previous section.
We would thus like to determine the effective mechanical
esponse of a smectic rubber when the layers are allowed to

uctuate freely and adopt the optimal conformation that low-
ers the total free energyld). The effective equilibrium
ubber-elastic energy is obtained by integrating out the layer

(3)_(5) For a uniaxial smectié: rubber one obtains determined by the eﬁectivequi”brium energy with no ex-
ternally imposed deformations. The result of such calculation
C,=2C,=c,kgT, C,=0, should be quite general and, again, equally applicable to
thermotropic smectié elastomers, lyotropic lamellar gels of
1 b, ckeT (r+1)2 crosslinked polysurfactants, and lamellar phases of block co-
CimM=_ , polymers.
8 cikgT (r=1)%+b,r We write the Fourier transform of the free-energy density
and then minimize it with respect to the smectic layer fluc-
~ bickeT (r—1)2? tuation modesi(q). In the leading approximations of expan-
1 CokaT (r—1)24 b1’ sion at small wave vectors, the resulting optimal layer modes
are given by
b, cikgT (1-r?) B (A1—Ay)
- ] 1 — 2 I .
2 chBT(r—1)2+blr (19 Ug=0qz 2A UzVq: N qJ_(qJ_qu+quqJ_)+ )
Near the nematic-smectic phase transition, when B [de,;| (A1—Ay)[dey, dey,
=g, 0o|#|? decreases aby|—0, the renormalized shear u(n=~v,+ 55—, oA x| ay
modulus CE™~%b, (r+1)%(r—1)2. Deep in the smectic (20)

phase, aty|— 1, we can assume that the magnitudd pfis

not very different from the layer compression const8nt The parameter of such expansion is, as one can see from the
=g ol #|?~10° JIn? in a typical smectic system, which is ratio of terms in Eq(20), ~(B/A)qZ or (u/A)q? . For the
usually much greater tham=c,kgT. In this case the shear second term it is straightforward to check that the series ex-
modulus recovers its “bare” value, as given by the original pansion is valid whem, <1/R,, the inverse network span,
expression for a nematic rubbeZs™~%c,kgT (r+1)%r.  which should be easily satisfied in any practical situation.
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The relation is less obvious, and the condition on the long
wavelength more demanding, for deformations along the
layer normal because one often finds a large layer compres-
sion constantB> u, especially in weakly crosslinked gels.
The corrections tai~v, would become relevant for defor-
mations along with wavelength=A/B.

Putting the optimal value for the layer fluctuation mode
back to Eq.(14) and rearranging the terms, one obtains the
effective elastic energy density of a smectic elastomer in the
form of F of the Egs.(1) and (2). Of course, nothing else
but the same five elastic terms in the uniaxial medium could
have been expected on the symmetry grounds. The rubber

elastic constants are renormalized by smectic fluctuations F'G- - Stretching the monodomain smectic elastotwertical
and acquire the effective values: in both sketches and imagesmposed strair(a) e,,—in the layer

plane, vertical in the picture an®) ,,—along the layer normal. In

Bulk moduli Cgff: Ca+ lASB, Cgﬁ: C,+ %B, the first case the high-modulgs rgsi;tancg to layer compression pre-
vents the sample from changing #slimension. In the second case
Shear moduli Ciﬁ: C1+%B, Ciﬁ: Ca, the_ directions perpe?dlcular _to the imposed stral_n offer no such
resistance and,,~ — 5&,,. This holds for small strains. However,
Cgffz CgmA+ %(Al_ 2A,), (21) at a higher strain the smectic finds a lower-energy deformation path:

layer buckling via the Helfrich-Hurault instability. The images are

whereCE™ is given by expressiofiL5) and, of course, one Ccourtesy of Nishikawa and Finkelmann.

can safely neglect the correction to the main bulk modulus .
Cs. normal would take placez,,—0, see Fig. @). Therefore,

To complete, and again make a connection with the mothe Sample thicknesnto the page in Fig. Gmust decrease

lecular theory of nematic elastomers, let us present the effeflOr®:-&yy— = &xx- _
tive rubber moduli of a smectic elastomer through the model N the reverse situation, when the sample is stretched
microscopic expression®)—(5). We thus obtain along the'layer normals(,, imposed the measured effective
modulus is
Cefi=1B+ckgT, CSf=1B,
e 200 f1)=2(C1+Cy)—2C,~B,

b, r2ckgT .
C§ﬁ=%chBT, cgff:% . (22 much higher than a normal rubber response. Both perpen-
CkpT (r—1)%+b,r dicular directions in the layer plane are now equivalent and

i i . experience the usual volume conserving contractigp

As before, neareftfhe nematlc-smeqtlc phase trqnsnmn thggxxz —Llg . In this geometry, however, the material will

shﬁar modulusCs™~b, —0. Deep in the smectic phase pe aple to find a lower-energy deformation mode: the

Cs'—CxksT(r/2). Helfrich-Hurault type of layer buckling instability discussed
The most important effect is the asymmetric renormaliza-in a number of paper[g?,,]_g,zq and resumng in an optica”y

tion of the shear modulC; andC,. Taking a typical smectic opaque scattering state in experimd®s,27, see Fig. ).
value B~10° J/n?, much greater than a typicat,kgT

~10*—10° J/n?, one finds the effective modul@;>C, in
a thermotropic smectic elastomer.

Appendix A gives details of calculation of the two effec-  We now continue to study the properties of smectic elas-
tive elastic response moduliy; and ., , that determine the tomers in equilibrium, when no external deformation is ap-
force on stretching the smectic elastomer along, and perpeiplied and the sample preserves its overall shape. In the pre-
dicular to the layer norma. These cases are shown in Figs. vious section we obtained effective rubber-elastic moduli,
6(a) and @b). An isotropic rubber stretched by an amoent which were renormalized by the freely fluctuating smectic
in one direction contracts symmetrically by e in the two  layers whose only constraint was the coupling to the polymer
perpendicular direction@r A and 1A/\ in terms of Cauchy network.

IV. LAYER STRUCTURE IN SMECTIC ELASTOMERS

straing and responds with a modulug,=3c,kgT. On Let us examine the opposite strategy. The smectic-layer
stretching the monodomain smectic in the layer plang ( degree of freedoru(r) can be easily monitored and is often
imposed the elastic response is given by the modulus the subject of an experimental study by optical or x-ray

methods. The reason for this interest, apart from the practical
attraction in manipulating the optical birefringence, is the
fundamental problem of the thermodynamics of a one-
dimensional crystalline lattice. The problem can be summa-
a usual rubber-elastic shear scale. The incompressibilityized as follows. A translational symmetry breaking in one
driven contraction along the layer nornmis resisted by the dimension only(i.e., a system of parallel equidistant layers
effective modulus~Cgs=B, insisting that the layer spacing with no interlayer structure: a smect¢- has, by symmetry,

dy remains constant. Because the ratio of the effectivehe degenerate elastic energy density expressed bg7Eor
moduli is large, no noticeable contraction along the layer(12) in real and Fourier space, respectively. Assuming rea-

_8C4(C1+Cy)

M= Cl+ 204 _)8C4~4CXkBT!
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sonably long-wavelength deformations, the equipartitionwith the exponent 7(T)=(1/87)q3(kgT/\B K). When
theorem of thermodynamics tells us that each mode of layepn2>2 there is no singularity in the scattering intensity at

fluctuationu(q) has a mean-square average all. Thus high-order peaks are suppressed and in fact usually
only the first-order peak is observed experimentally. Preci-
o VkgT sion x-ray scattering experiments, beginning from the work
(lug®)= B q§+K qf : (23 of Als-Nielsenet al.[25-27], have confirmed this prediction

and the following critical behavior of smectic liquid crystals,

Since layer fluctuations in the plane are penalized by #&lominated by thermal fluctuations. We expect that in smectic
higher power of displacement gradient, the fluctuation mode§lastomers and gels, due to the coupling to the rubbery net-
have a much higher amplitude @0 than in a usual three- Work, these fluctuations will be reduced. We shall see that
dimensional So|idwhere the ana|ogous mean-square a\/erihe elastic matrix of the smectic elastomers reestablishes
age is proportional ti&gT/C ). The quality of order in a ong-range order so fluctuations merely attenuate the full
lattice is determined by the correlation of its fluctuations infange of Bragg scattering peaks.

real space. In a smectic one-dimensional lattice such fluctua- Similar to the treatment in the previous section, we need

tions correlate over large distances: a direct integration gived0 find an effective Hamiltonian of the smectic elastomer
e.g.,[24], system, described by the layer phase variallg) or its

Fourier modesi(q). To do this, we need to integrate out the
unconstrained fluctuations of the elastic deformation field

3
(u(O)u(r))=f KeT e i@n d’q v(g)—the phonon modes in the equilibrium rubbery net-
Bg?+Kqg! (2m)3 work. We consider mechanically undistorted elastomers: the
results are different when an elastic strain is imposed in the
kgT ) system and will be reported in a different publication.
B K)l/gln(rz) if r; =0 The details of the calculation are given in Appendix B.
~ (24) The Fourier transform of the free-energy densitst), which
kgT _ depends on botla(q) andu(q), can be arranged as a qua-
(B—K)l,zln(u) if r,=0. dratic form:

This weak logarithmic divergence is known as the
Landau-Peierls effect. It corresponds to the slow, power-law F = %vq- G(g)- va‘ —I'(g)-[vq ua‘ + va‘ Ug] + : M(q)luq|2.
decay of the structure factdi(r), defined here as the corre-
lation of density fluctuations, {exp(gqu(r)—u(0)])) (26)
=exp(—30%[u(r)—u(0)?»), with the wave vector g,

=27ldy, and signifies the marginal case between the true h imal mod ; K def ) btained
crystalline or bond orientational order, with the structure fac-' N€ ©Ptimal modes of network deformationgare obtaine
by minimization of this quadratic form producing a vector

tor constant as— o, and a short-range order of liquids with ™: L n
g . displacement obq=2(g‘1~F) Ug, which is rather cumber-

rapidly decayingS(r)~e~ "¢, ! . : DR
pidly yings(r) some. We examine the expression as an illustration in the

Such an effect is directly seen on x-ray scattering experil_ it a/a. <1 thatis f des that | I ¢ al th
ments, where the diffraction from smectic layer densityImI 9:/d, <1, thatis for modes that lay aimost along the
plane of the layers:

modulation generates a peak in reciprocal spacegat
=2m/dy. The scattering intensitl(q) is proportional to the
Fourier transform ofS(r) and thus reflects the nature of
correlations in the system. In a crystalline lattice with long- v~
range order, the Bragg reflections are nominally delta func-
tions, 1(q)~ 8(g—qg) at each reciprocal lattice vectp23],

which are broadened by the diffusive scattering and modu-
lated by the Debye-Waller factor- exp[—ﬂszT/dSC], a v r”(
measure of thermal fluctuations. Quasi-long-range order in a K
one-dimensional smectic lattice results in the famous expres-

sion for the scattering intensif24]

1 2
(A—Ayqs+---

! A,—8Cs)>
(A — S)QJ"H

1+ﬁ Ug,

1 2
1- ﬁ(Al"' Ay)Q7

(qZ/qL)—'_.“ uql

thzo. (27)

Ih(Az, QL =0)~ ———— . _
(d,—nNndo) This shows the expected behavior, that for snsglbne

obtainsv,= u, that is the normal displacement of the elastic
matrix becomes rigidly fixed to layers. Also in the same limit
vq1 =(09,/9,)Uq, vq¢=0 orin real spac&v,/dx=duldz,
v{=0 showing that the material appears incompressible to
these modes.

The effective free-energy density, evaluated at the optimal
The anisotropic power-law decay describes the intensitgonfiguration of network phonons, and simplified as de-
around the peak position, near the nematic-smectic transitioscribed in Appendix B, becomes

and

1
1(9;=0,9.)~ - - (25
a.
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con_ 1| BCE'02+ (BCE™-3A1-245)q1 ~2(24, ~ 24,)0747 ee2|jug?
2 402 +(4CECy) g2+ (4CE A ) gl e
where
Cef=Cg™+ L(A,—24,), (28)

cf. EqQ.(21). Note that the term-(Cs/C3)q? in the denomi-  classical theories and experiments on smetigjuid crys-
nator cannot be neglected in spite of the nominal incomials. The mean-square layer fluctuation, remaining after the
pressibility. One may encounter a situation whgn=0, elastomer penalty has been implemented, follows directly
when this term will become the leading effect. Expressionfrom Eq. (28). The result depends on the orientation of the
(28) may still appear cumbersome, but it is easy to study it§luctuation mode.

implications in the two limiting casesj,—0 andq, —0 In the most common caseg, /g,>+Cs/C3 the bulk
separately. These two limits, in which the results can be premodulusC; cancels from the numerator and denominator in
sented in a simple intuitive way, are also the focus of theEg. (28), giving:

VkgT

VT

sirfe

u(gQ)?), ~ B
(lu(@[*). B*q§+20;qf+2C§ﬁ[Q§/Qf]

where

B*:B_A1+A2,

ci=

g?> 2CE"+(B* —4CMsirto— (B* —2CE"—2C%)sint6’

CS™—1(3A,+24,) (29)

and >/C5/C5 is the angle between the wave vector of therefore, both types of behavior can be readily accessed by

deformationg and the layer normat, see Fig. 4. One can
verify that the kernel of Eq(28) and the denominator of Eq.
(29 are positive for all directions of|, even though some
combinations oB, CE™, A,, andA, may be negative.

a detailed experiment on layer compression extension.
Physical reasons for having the effective smegtielastic

energy(28) proportional to an overall square power? are

quite transparent and follow directly from the main feature of

In the case when the wave vector is almost parallel to thémectic order in a rubbery network—the relative translations

layer normal,q, /q,<Cs5/C3<1, the bulk modulus domi-
nates the fluctuation spectrum:

1+(C3/A)q?
(lo(@%)~V kBT?Z
3qz
V kT
e at [gl~q,<\JAIC;  (30)
34z
V kT
———=const atg,> AIC,

(still very small: g,<qg). (31

coupling(9). In a liquid smectic, only layer curvatuf@fu is
elastically penalized. When there is an underlying elastic net-
work, coupled to the layer displacement, the usual smectic
degeneracy with respect to uniform layer rotatidhsu is
lost and we obtain the solidlike elastic energy, ER9).
Naturally, the renormalization is determined solely by
rubber-elastic parameters: the shear mod@ysand cou-
pling constant\. The special case is the longitudinal layer
deformation of an incompressible smectic elastomer, when
the system becomes very rigid indeed, controlled by the bulk
modulus effects.

Equationg29) and(30) also tell us that there is no longer
a Landau-Peierls instability of smectic fluctuations. The
logarithmic divergence of the correlation function
(u(0)u(r)) is suppressed by the network elasticity. There-

The regime(30) occurs inside the narrow cone of wave vec- fore the x-ray scattering on smectic layers will no longer be

tor directions, given by the conditiod=Cs/C5. For a

typical elastomer this amounts 8<0.6°, or even less when
the smectic order is weak ar@d™~ 2. This essentially
means pure compression modes along the layer normal.

The border between the bulk compressibility response to a
longitudinal distortion and the, unusual in this context,

“masslike” response (31) occurs at gi~\A/Cs
~[100R,] 2. In the case of weak smectic ordgf~ ¢ and,

purely diffusive, but will take a usual form of Bragg peaks
with a thermal Debye-Waller factor. Scattering intensity in
reciprocal space will take the form

'(Q):f or eiq'r<p(0)p(r)>=f dreia-w-rs(r)
(32

for the first-order reflection peak in an ideally infinite sample
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(so that no additional finite-size peak broadening odcuns
an ordinary smectic, one obtains from the logarithmic diver- l‘“
gence(24) [24]. In contrast, in an ideal defect-free smectic
elastomer the diffusive scattering is far less important. The |
primary effect in the structure factor is a Debye-Waller con-
stant given by direct integration of Eg9) and (30).

The x-ray scattering intensit{82) becomes modulated by

the Debye-Waller factor (a) (b)
1472 ) FIG. 7. X-ray scattering of an aligned smectic elastonf@ra
Xy 35 _d2 (Jul®) ], 3D projection of calculated scattering intensity, modulated by the
0

Debye-Waller factor, Eq(33); (b) the experimental image illus-
érates the high degree of orientatiofiaématig¢ order of mesogenic
groups in the wide angles and the sme¢timellan order of layers
with a number of multiple-order reflections in small angles. Image
courtesy of R. Zentel.

where the mean-square fluctuation of layers is given by Eq
(34) and(35). For each consecutiveorder peak one obtains

0, Zdln) o~ (U2)(4?n?)1di(|u?)). (33)
0

(g)=2 &
" resolve the difference between Bragg and Caille diffraction.
Far from the smectic-nematic transition, when the IayerThe results produced a line shape for a smectic elastomer

compression constant is larggs Cs, one obtains I(qz)~'1/q2'.4 in a broad range of wave vectors down to the
resolution limit of several inverse micrometers. In contrast,
keT the same polymer material not crosslinked into the network,
(Ju]y~ ———, (34 under the same conditions, shows the intensity profitg)
doVC5 B ~1/9%®. As expected, this is somewhat less than the theo-
. _ ) retical limit of 1/q° for the Landau-Peierls quasi-long-range
whereCs is defined in Eq(29). order, cf. Eq.25).

The limiting caseCg"/B>1, can be achieved in a highly Equation(33) describes the reduction in each consecutive
nonsoft elastomer, where the condition tt§f~ || is not  Bragg peak intensity arising from thermal fluctuations con-
satisfied but the smectic layer compressiBnand the trolled by the effective Hamiltoniari28). In real smectic
relative-rotation couplingsA; and A, (which are propor- elastomers, there are quenched random undulations of the
tional to b,) are still ~|#|2. Then, in a network with a smectic layers that result from the random nature of the
relatively high degree of crosslinking, near the smecticcrosslinking of the underlying network. These random undu-
phase-transition point whei®,A,,A,—0, the mean-square lations would lead to further reductions in Bragg peak inten-
fluctuation becomes sity, but will not destroy the true long-range order in the
periodic one-dimensional lamellar lattice. Quenched random
distortions will also lead to additional diffuse scattering and

(39 the corresponding broadening of Bragg peaks.

2y B
<|U| > ’7Tdo4C5.

Qualitatively, neglecting all effects of potential softness,
uniaxial anisotropy and layering, all rubber mod@j~ u V. CONCLUSIONS

=c,ksT. We have then for the Debye-Waller facter™ We modeled the behavior of a smecficelastomer using
in Eq. (33): W=(4w%/dg)I/cy~(IRy/dj) (wherel is a g continuum expansion of the free energy in the small defor-
characteristic size of a mesogenic monomekt c,—0  mation limit. Interesting properties of this system, an elastic
(strictly, below the network percolation limithe Debye- medium with a periodic layer microstructure, arise from the
Waller exponent diverges and thus suppresses the Braggterplay between the two degrees of freedom, namely, the
peak in the x-ray scattering intensity. The usual smeatic- |ocal displacement of the elastic matrix, and that of the smec-
diffusive scattering would then prevail. tic layers. Our results may thus be broken down into two
Precision x-ray scattering requires a very narrow dispergroups. The first group details the effect of the smectic de-
sion of the incident bearh(q) in order to resolve the line grees of freedom on the macroscopic elastic properties of the
shape of a smectic diffraction pedkig. 7). This is usually  system, namely, the elastic response and the moduli, summa-
achieved by multiple-Bragg reflection in the monochromatorrized by the uniaxial Eq(2) and the constant§21). The
and the analyzer crystals. A study of long-range order in &econd group of results, in Sec. IV, describes the effects of
monodomain, side-chain, polymer smeddsystem capable the elastic matrix on the fluctuations of the smectic layers
of forming an elastomer by photocrosslinking has been perand, ultimately, on the state of lamellar order.
formed recently by Wonget al. [28]. The freely standing We determined the change in the elastic moduli due to the
films of smecticA polymer were aligned in a magnetic field. liquid-crystalline degrees of freedom by integrating out the
Good monodomain orientation has been achieved, with th#luctuations of the director and of the layer displacements.
layer mosaic not exceeding 2.5° for the elastomer and 4.1We also examined these changes using particular values of
for the uncrosslinked polymer. The measurements usingnaterial constants derived from a molecular model for the
triple-reflection channel-cut Si crystals have achieved amnderlying nematic elastomer syst¢fj. We found, unsur-
incident-beam dispersion of 1/q>®, sufficiently narrow to  prisingly, that the presence of smectic layers destroys the
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conditions required for soft nematic rubber elasticity. The _1

ot ; ; . exx—3 1 €] 0 0
effect of the renormalization of elastic moduli was negligible =
in the case of the bulk modulus but substantial—increasing 0 eyy—3 TI €] 0
them by an order of magnitude—in the case of two of the L
shear moduliC,,C,. The third shear modulu€, was un- 0 0 273 T €]

changed leading to a large effective anisotropy in the average

macroscopic elastic properties. This explains the large arlWith Tr{€]=ex,+eyy+e,,). We continue using a conven-

isotropy found in the response moduli measured by Nishtion that the undistorted layer normil=n, is along thez

ikawa and Finkelmanf21,22. axis. The effective elastic energy, e.g., EB), is explicitly
We determined the damping effect of the rubber-elastigVritten in terms of the components of strain:

matrix on the fluctuations of the smectic layers, improving

the initial description given in Ref.10]. In ordinary smec- F elasti— Cl(észz—%sxx—%syy)z-i- 2C (exxteyytey)
tics, fluctuations only permit the existence of a quasi-long-

range order in a one-dimensionally periodic layer stack. The X (582, 58xx— 58yy) + Calxyt eyyT €57
elastic matrix, in which such layers are embedded in our

case, was found to suppress these fluctuations, resulting in +ZC4[(§8xx—§8yy—%Szz)2

true long-range order being established. Precision x-ray dif-

fraction experiments confirm this observation in real +(5eyy— 585 38297, (A1)

smecticA elastomers, exhibiting many visible orders of

Bragg peaks. The Debye-Waller factors, determining the atwhere all moduli are taking their renormalized, effective val-

tenuation of consecutive Bragg peaks, are calculated in twd€s, EQ.(21).

limiting cases: well within the smectic phase, and in the case In the case shown in Fig.(&), in-plane stretching, the

of a highly nonsoft material near the nematic-smegtic- Strain e,,=e is imposed. Two other components are ob-

phase transition. tained by minimization of the enerd)Al). Neglecting terms
In conclusion, one should point out that an elastomeridroportional tou/Cs, i.e., assuming full incompressibility,

material should allow large deformations to be sustainableve have

The present paper is confined to the limit of small strains and

only describes the near-equilibrium response of the material. G i 2G| A2
However, as in classical rubbers and solid crystals, one could Eyy™ Ci+ 2C48' Ga” Ci+ 2C48’ (A2)
make conjectures about the behavior at larger deformations.

For certain straingextensions or sheagrin the layer plane gyy——&; €,,~0 at C;>C,

there is no significant change due to the presence of lamellar
order and a normal rubber-elastic response is expected s illustrated in Fig. @). At these optimal values of volume-
persist. Other deformations, such as an extension along thgnserving strains, the rise in elastic energy in response to
layer normal, are strongly affected by smectic density moduthe imposed straig is given by
lation and the high-modulus linear response predicted in this
paper cannot exist for a large range of strains expected of a . CaCi+Cy
rubber. The Helfrich-Hurault instability occurs in the nonlin- Fo~ WS
ear regime and the layer system buckles in a periodic fash-
ion, thus providing a lower-energy route to accommodate theng, thus, the measured modulus
strain’s .
8C4(C1+Cy)

Mmoo = C,+2C, —8C,~4c,kgT.
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the expected symmetric transverse contraction, as one finds

APPENDIX A: EFFECTIVE ELASTIC MODULI  pj AND p, in any isotropic incompressible material, see Fig)6The

) ] o _ energy response to the imposeds now
Consider two cases when a uniform extension is applied

to a sample of monodomain smectic rubber, Fig. 6, in the F*~(Cy+Cy) &2
two orthogonal principal orientations of layers. In this paper

we only consider the infinitesimally small strains so that nognq the effective longitudinal modulus
effects of director or layer rotations are to be considered in

the chosen orientations. Both geometries prevent macro- ) =2(C1+C4)—2Cy~B,

scopic shear strains and the only relevant componerﬁg,pf
are the smectic layer compression constant.
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APPENDIX B: INTEGRATING OUT RUBBER-ELASTIC atic director fluctuation modes. The coefficient penalizing
PHONONS the “bare” layer fluctuationau(q) in Eq. (26) is given by
The Fourier transform of the free-energy densiiy), -
which depends on boti(qg) andu(g), can be arranged as a M=2A+Bd;+Aq7 +Kq] (B3)
guadratic form, Eq.(26), where the matrix elements are _
given by (with K=[bf/(bL+D1)2]K1). However, one expects it to
change significantly when the rubber-elasti@) modes are
Vg2 A+3(A+2A,)9° integrated out.
B B s The further calculation is straightforward and was already
vg=| Yar [, I'=| —5(A1-245)q,0, | (BD) performed on other occasions: minimizing the quadratic
Ugt 0 form (26) we obtain the optimal modes of network deforma-
tions, e.g., here;q=2(g*1~l“) Uq and the minimal(effec-
G,~2A+C302+2(8Cs+A;+2A,)02, tive) free-energy density becomes

G, ~Cyql +5(8Cs+A;—24,)q? G, A'?-2G, I, I' +G, I

GzzGJ_J_ - Gi_

1
Fef=2| M(a) -4 lug®

Gy=2C40° +3(8Cs+A,—2A,)q2,

G,,=G, ~Cs0,9, , The_z full expression, with matrix ele_mer_lts_ explicitly putin, is
tedious but there are possible simplifying approximations
G,;=G;,=G,=G,=0, (B2)  due to the large bulk modulda; always, neglecting terms of
orderCs/C3) and the constraint of small wave vectdex-
where the similar terms were neglected when appearing nexlicitly estimated asg<+A/u~1/R,, the network span
to the bulk modulusC; (assuming, as alway€s/Cs;<1) After these are implemented, we have the effective energy
and the shear modullfimA is already renormalized by nem- density

1| 8CE"g;+(8Cs—3A1-45)q] —2(24, - A,)qZq?

eff 2 2
+
49° + a2+ q
L C3 z A z
where
CE'=C2™+§(A1-24,),
cf. Eq. (21).
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